
Appendix for Fine-Grained Classification with Noisy Labels
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(a) 40% Symmetric noisy labels
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(b) 30% Asymmetric noisy labels

Figure 1. Ten tested methods (left → right): cross-entropy, label smooth, confidence penalty, GCE, SYM, Co-teaching, JoCoR,
MW-Net, MLC, DivideMix. Methods with same color belong to same LNL robust strategy. The x-axis denotes their perfor-
mance on typical LNL task while the performance increases gradually from left to right.

Table 1. An ablation study on 40% symmetric noisy labels. The performance of Co-teaching can be improved by several robust
techniques and gets close to the performance of DivideMix (the SOTA).

Co-teaching Mixup Pseudo-label Conf. reg. EMA Stanford Dogs CUB-200-2011
✓ 49.15 (48.92) 46.57 (46.22)
✓ ✓ 62.79 (60.10) 54.04 (53.09)
✓ ✓ ✓ 72.44 (71.97) 65.77 (63.91)
✓ ✓ ✓ ✓ 75.21 (73.94) 66.47 (65.73)
✓ ✓ ✓ ✓ ✓ 77.84 (77.41) 67.64 (67.20)

DivideMix 77.93 (76.28) 67.35 (66.96)

A. A prior study
In this section, we conduct a preliminary investigation to evaluate the performance of current LNL on LNL-FG.

We adpot pre-trained ResNet-18 as the backbone and set varying noisy conditions. Fig. 2 in Introduction, Figure
1 and Table 1 exhibit the qualitative results. Our finds are divided into two parts,

• Not all investigated algorithms can achieve significant performance for LNL-FG as they achieved in
LNL, demonstrating the difficulty of fine-grained noisy settings. In Stanford Dogs and CUB-200-2011,
Cross-entropy, a non-robust method, attains competitive generalization performance while outperforming
more than half methods. The insufficient robustness of these methods empirically demonstrates that LNL-
FG poses a more challenging noisy condition for model learning and has not attracted much attention.

• The generalization performance of LNL methods heavily relies on techniques that can mitigate overfit-
ting on noisy labels. In Table 1, we select co-teaching, a method with poor performance on LNL-FG, and add
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Figure 2. Illustration of symmetric and asymmetric noise transition matrix. There is a 10-classes classification task and the
noise ratio is set as r = 0:4.

four robust techniques step by step. Each technique improves the performance of the basic method. Combining
with Mixup, pseudo-label, confidence regularization, and EMA model, top-1 testing accuracy of Co-teaching
on the clean test set of Stanford Dogs is improved by 13.64%, 9.65%, and 2.77%, respectively. However,
integrating these existing techniques into the training process is difficult or requires customized adaptations,
inspiring us to design a general method which can be applied to current LNL methods for improving their
performance on LNL-FG.

B. More implementation details
B.1. Noise transition matrix

We give an illustration of two types of the transition matrix in Figure 2.

B.2. Settings of benchmarks

In this work, we select four fine-grained datasets, two generic datasets, and one open-world noisy set to verify
the effectiveness of our method. The detailed information of these benchmarks is shown in Table 2. For validation
and hyper-parameter adjustment, we reserve 10% clean training samples and construct noisy benchmark on the
rest samples. Besides, we adopt weak augmentation strategies for comparison, including randomly cropping from
255×255 to 224×224 and horizontally flipping.

Table 2. Statistic information of the benchmarks and relevant settings.

Datasets # Train # Test # Classes # Size # Features Model # Warmup # Epochs
Fine-grained set (pre-trained)

Aircraft [9] 6667 3333 100 224 512 ResNet-18 10 100
CUB-200-2011 [12] 5994 5794 200 224 512 ResNet-18 10 100
Stanford-Cars [5] 8114 8441 196 224 512 ResNet-18 10 100
Stanford-Dogs [4] 12000 8580 120 224 512 ResNet-18 5 100
Generic set
CIFAR-10 [6] 50000 10000 10 32 512 PreAct ResNet-18 10 100
CIFAR-100 [6] 50000 10000 100 32 512 PreAct ResNet-18 20 100
Real-world set (pre-trained)

Food-101N [2] 55000 25000 101 224 2048 ResNet-50 5 50
Clothing-1M [17] 1000000 10000 14 224 2048 ResNet-50 1 15



B.3. Settings of comparison methods

We compare our proposal with cross-entropy loss function and the following baselines:

• Label smooth [8], which reassigns the sample label from a hard version to a soft version like f0; 0; 1g !
f0:05; 0:05; 0:9g. This method confronts the effects of noisy labels by mitigating over-confidence of the model
on the given label.

• Confidence penalty [10], which stems from the motivation of penalizing low entropy output distributions. It
connects a maximum entropy based confidence penalty to label smoothing through the direction of the KL
divergence.

• GCE [18], which analyzes the robustness of MAE and the poor performance. Then, the author presents a
theoretically grounded set of noise-robust loss functions that can be seen as a generalization of MAE and
CCE.

• SYM [13], which obeys the paradigm of the symmetric loss function that ensembles CE and reversed CE. The
latter is demonstrated as a robust loss function.

• Co-teaching [3], which ensembles two branches for alternatively selecting samples with small losses and
feeds them to another network training. Co-training strategy alleviates the error accumulation of the selection
to some degree.

• JoCoR [14], which leverages the framework of Co-teaching and further designs a KL term for consistent
output of two networks. It explores the lower bound of small loss and prompts accurate selection.

• MW-Net [11], which designs a meta-network for generating the sample weight via learning a function from
loss to weight. The meta-weight is inserted into the training of the classification network by bi-level strategy.

• MLC [19], which also designs a meta-network for label correction. It learns from the original label and feature
embeddings and outputs the corrected label.

• DivideMix [7], which belongs to a hybrid approach that bases on sample selection and ensembles co-training,
pseudo-labeling, and Mixup. It attains state-of-the-art performance on LNL.

For fair comparisons, we keep the same hyper-parameters as they reported in their published versions, where
some settings are marginally adjusted, and we report them in table 3. In addition, we adjust the selection process
in Co-teaching [3] and JoCoR [14] when combines with our algorithm. Since our algorithm changes the original
noise ratio in the training set, we replace the pre-estimation of the noise ratio with the dynamic strategy (i.e., GMM
fits the losses among all samples).

Table 3. Detailed settings of compared methods in experiments.

Method Settings
SYM [13] SYM = �� CE + � � RCE, where � = 0:1; � = 1

Label Smooth [8] smooth coefficient � = 0:1
MW-Net [11] extra clean sample number N = 5� category number

MLC [19] extra clean sample number N = 5� category number



Figure 3. Illustration of stochastic module. Compared to typical augmentation strategies in contrastive learning, we replace it
with a stochastic module. Original feature embedding zi is input into a stochastic network. Then, the augmented embedding
z′i can be sampled from the generated distribution. We consider that the property of stochastic provides more complex feature
transformation than typical augmentation in images space, as well as avoiding manually defined augmentation strategies for
different datasets.

C. More results and analysis
C.1. Stochastic module vs. Deep VIB

In this paper, we build a stochastic module for learnable feature transformation, which is constructed as a three-
layer MLP structure as shown in Figure 3 (b). The architecture of stochastic module is similar to deep VIB [1] and
we give the difference between these two methods as follows.

The main difference is that we incorporate a stochastic embedding module into the contrastive learning (CL)
framework, which can sample a feature vector for CL and avoid sophisticated data augmentation in typical CL.
But Deep VIB conducts Monte Carlo estimation of the expectation of the conditional prediction distribution for
supervised learning. VIB has been proved as a better regularizer compared with other forms (e.g., confidence
penalty & label smoothing) and can naturally benefit LNL in the supervised learning framework.

C.2. MLP structure of stochastic module

We actually have tried different MLP architecture settings in the following experiments. Table 4 exhibits the
comparison results with five structures. It can be seen that varying MLP settings do not remarkably affect the
final results. Therefore, we prefer to adopt the simple yet effective one, i.e., fh1; h2; h3g = f512; 2048; 512g.
Compared to the the backbone whose params is around 11.9 M, the learnable params of this module is only 0.06
M, which do not cause complex computation.

Table 4. Test accuracy (%) of CE + SNSCL with different MLP architecture on 40% symmetric noisy labels. The average best
score among three times are reported.

Architecture fh1; � � �; hng Stanford Dogs CUB-200-2011 Aircraft Stanford Cars
512 - 1024 - 512 74.79 68.79 70.30 76.44
512 - 2048 - 512 75.27 68.83 70.48 76.72
512 - 4096 - 512 75.01 69.09 70.19 76.51

512 - 1024 - 1024 - 512 74.96 68.66 69.84 75.90
512 - 2048 - 2048 - 512 75.04 69.00 69.07 75.61

C.3. Results on LNL task

Table 5. Comparisons with test acc. (%) on generic classification task. The solid results denote the improvement of our method
SNSCL. The average results among three times are reported.

CIFAR-10 CIFAR-100
Symm. 40% Asym. 40% Symm. 40% Asym. 40%

Peer Loss [11] 84.29 / 92.21 85.18 / 91.59 50.53 / 69.82 50.17 / 68.90
JoCoR [14] 85.44 / 92.70 83.91 / 91.41 55.97 / 71.44 50.97 / 69.89
CDR [16] 86.13 / 93.83 85.79 / 92.08 60.18 / 71.95 59.49 / 71.57
SFT [15] 89.54 / 94.59 89.93 / 94.27 69.72 / 74.52 69.29 / 73.19

DivideMix [7] 94.80 / 95.92 93.40 / 94.90 74.92 / 76.04 72.10 / 75.16



C.4. Visualization

Figure 4 demonstrates that SNSCL improves the representation ability of the feature extractor under noisy
CIFAR-10 & 100 and achieves more distinguishable class representation.

C.5. Robust learning curves

Figure 5 shows the robust learning curves of our algorithm under all noise conditions.
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Figure 4. t-SNE visualization for feature representation.
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