

Influence-Based Fair Selection for Sample-Discriminative Backdoor Attacks

Qi Wei¹, Shuo He¹, Jiahan Zhang³, Lei Feng², Bo An^{1,4}

¹Nanyang Technological University, ²Singapore University of Technology and Design ³Johns Hopkins University, ⁴Skywork Al

Contributions

- fair backdoor sample selection.

Quantitative Results

Preliminaries

Influence Functions:

Calculating the impact of training samples with a trigger on the backdoored test risk contributes to find the backdoor samples.

A Toy Model

Settings: binary classification task (5000 positive and negative points); each sample is with 768 dimension; three-layer fully-connected network; construct backdoor sample with setting last 20 dimensions to zero;

Computing influence score of backdoor sample on the test risk

Backdooring the sample in *Group 1* (the group closest to the class prototype) probably causes a bigger value of influence, contributing to reduce the backdoored test risk.

Infecting samples closed to class prototype achieves better ASR!

Homepage: https://weiq0010.top

 z_i : A training point z_i : A test point sampled from Q

 $= -\nabla_{\theta} \ell(\boldsymbol{z}_{j}, \hat{\theta})^{\top} H_{\hat{\theta}}^{-1} \nabla_{\theta} \ell(\boldsymbol{z}_{i}, \hat{\theta})$

Methodology

Our Framework:

$$D_M \leftarrow \{(oldsymbol{x}_i, oldsymbol{y}_i) | \phi_i$$

Email: qi.wei@ntu.edu.sg

Nanyang Technological University