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Abstract

Learning with noisy labels aims to ensure model generaliza-
tion given a label-corrupted training set. The sample selec-
tion strategy achieves promising performance by selecting
a label-reliable subset for model training. In this paper, we
empirically reveal that existing sample selection methods
suffer from both data and training bias, which are repre-
sented in practice as imbalanced selected sets and accumu-
lation errors. However, only the training bias was handled
in previous studies. To address this limitation, we propose
a noIse-Tolerant Expert Model (ITEM) for debiased learn-
ing in sample selection. Specifically, to mitigate the train-
ing bias, we design a robust Mixture-of-Expert network that
conducts selection and learning on different layers. Com-
pared with the prevailing double-branch network, our net-
work performs better on both selection and prediction by
ensembling multiple experts while training with fewer pa-
rameters. Meanwhile, to mitigate the data bias, we pro-
pose a weighted sampling strategy that assigns larger sam-
pling weights to classes with smaller frequencies. Using
MixUp, the model is trained on a mixture of two batches:
one sampled by a weighted sampler and the other by a
regular sampler, which mitigates the effect of the imbal-
anced training set while avoiding sparse representations
that are easily caused by sampling strategies. Extensive ex-
periments on seven noisy benchmarks and analyses demon-
strate the effectiveness of ITEM. The code is released at
anonymous.4open.science/r/ITEM-18AB.

1. Introduction
The remarkable generalization capability of deep neural
networks (DNNs) is achieved through training on a large-
scale dataset. However, existing training sets are usually
collected by online queries [6], crowdsourcing [49], and
manual annotations, which could inevitably incur wrong

*Corresponding author

0 20 40 60 80 100

# Class Index

0

200

400

600

N
u

m
b

er

Small-loss with threshold

Small-loss with GMM

Fluctuation-based noise filtering

Figure 1. Existing selection criteria always lead to an imbal-
anced training set, termed as the data bias. A ResNet-34 is
trained on CIFAR-100N. We visualize the class distribution of the
selected set, given three typical selection criteria. The quantity of
class-level samples in the last epoch is counted, while the index of
classes is sorted. More results can be found in the Appendix A.

(or noisy) labels [41]. Since DNNs exhibit vulnerability to
such low-quality training sets [54], training on the label-
corrupted set presents a great challenge for the modern
machine-learning community. To mitigate the adverse ef-
fect brought by noisy samples, learning with noisy labels
(LNL) [38, 45] is important, contributing to improvements
of the model’s generalization on practical applications.

Sample selection [11, 21, 40], a prevailing strategy for
LNL, achieves considerable performance in mitigating the
effects of noisy labels [48] by carefully selecting clean
samples from the label-corrupted training set. The per-
formance of sample selection approaches is largely de-
cided by the selection criteria, which can be roughly cat-
egorized into two sides: 1) small-loss based strategies
[3, 11, 21, 26, 38, 52], which are motivated by the mem-
orization effect [2] that DNNs learn simple patterns shared
by majority examples before fitting the noise. Hence, the
samples with small losses in the early learning stage can
normally be taken as clean samples. 2) fluctuation based
strategies [40, 45, 53, 58], which are motivated by the obser-
vation that DNNs easily give inconsistent prediction results
for noisy samples. These methods [40, 53] normally con-
sider an instance incorrectly labeled if its prediction results
exhibit alterations within two consecutive training rounds
or during a specified subsequent period.

anonymous.4open.science/r/ITEM-18AB
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Figure 2. We train ResNet-18 on Sym. 60% CIFAR-100 with small-loss [11] and fluctuation-based noise filtering [40]. (a) Results on
small-loss. Left: the class distribution of three training stages. Right: dynamic numbers of four representative categories. (b) Results on
two selection criteria. Visualization of the class-level selection performance (F-score) Fk in 100- and 200-th epoch.

Despite the validated effectiveness, there is a common
view shared by existing sample selection methods that the
sample selection processes are only influenced by a train-
ing bias, i.e., the accumulated error. In this paper, we, for
the first time, show that by extensive experiments, there ex-
ists another type of bias, i.e., the data bias, which is mainly
caused by imbalanced data distribution. To be concrete, we
split the bias in a selection-based learning framework into
the training bias, which inherently exists in a self-training
manner, and the data bias, which indicates the selected set
tends to be class-imbalanced (see Figure 1). Moreover, we
customize a class-level F-score and do extensive experi-
ments in the next section, providing three nontrivial findings
that reveal the adverse effect of the data bias. These ob-
servations motivate us to consider a novel selection-based
learning framework that can simultaneously address train-
ing and data bias.

To this end, we propose a noIse-Tolerant Expert Model
(ITEM), consisting of a noise-robust multi-experts structure
and a weighted sampling strategy.
• Firstly, motivated by the idea of ensemble learning [9] and

the Mixture-of-Expert model [16], we design a robust net-
work structure integrating the classifier with multiple ex-
perts. Our network is more robust compared with existing
robust networks like double-branch network [11] for the
following reasons, 1) in our structure, the classifier learn-
ing and selection are disentangled, with experts selecting
clean samples for the classifier’s training, naturally mit-
igating the issue of error accumulation. 2) Ensembling
selection results from different experts reduces harmful
interference from incompatible patterns (e.g., poor selec-
tion made by individual experts), leading to a cleaner se-
lected set.

• Secondly, to mitigate the implicit data bias during selec-
tion, we propose a weighted resampling strategy named
mixed sampling. By calculating the quantity of each class
in the selected set, we assign larger weights to tail classes
through a mapping function during sampling. Finanlly,
introducing the MixUp [55], our network is trained on a

mixed batch that combines two batches based on a regular
and a weighted sampler, fulfilling class-balanced learning
while avoiding the issue of sparse representations.
The promising performance of ITEM is verified on seven

noisy benchmarks. Extensive ablation studies and analyses
also demonstrate the effectiveness of each component.

2. Understanding the Bias in Sample Selection
In this section, we first introduce the formal problem setting
of learning with noisy labels (LNL) and its learning goal.
Then, we conduct experiments to deeply analyze where the
bias of sample selection in LNL comes from.

Assume X is the feature space and Y = {1, 2, . . . ,K}
is the label space. Suppose the training set is denoted by
D̃ = {(xi, yi)}i∈[N ], where [N ] = {1, 2, . . . , N} is the
set of indices. Since the annotator may give wrong labels
in practice [18], the learner thus can only observe a label-
corrupted set DN = {(xi, ỹi)}i∈[N ] with noisy labels.

As a prevailing strategy for LNL, sample selection [21,
24, 40, 45] aims to progressively select a reliable subset
DM ⊆ DN (M < N ) and feed DM to the classifier for
training. We introduce vi ∈ {0, 1} to indicate whether the
i-th instance is selected (vi = 1) or not (vi = 0). Gen-
erally, the performance of a selection-based method can be
reflected by the deviation between the actual selected sam-
ples and the total clean samples, which can be measured by
the F-score F, where F = 2·P·R

P+R , P and R denote selection
precision and recall, respectively. In this paper, we indi-
vidually calculate each class’s F-score for further analysis.
Specifically, the class-level F-score for class k is written as

Fk =
2 · Pk · Rk

Pk + Rk
, where

 Pk =
∑

i∈[N] 1(vi=1,yi=ỹi=k)∑
i∈[N] 1(vi=1,ỹi=k) ,

Rk =
∑

i∈[N] 1(vi=1,yi=ỹi=k)∑
i∈[N] 1(yi=ỹi=k) .

By analyzing the selection performance under different
training conditions, we have several nontrivial findings.
• Current selection criteria easily result in an imbalanced

selection subset. As shown in Figure 1, we can see that
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Figure 3. Comparisons of different network structures. (a)
Typical classification network, which consists of a feature extrac-
tor and a classifier layer. (b) Mixture-of-experts (MoE) [29], a
set of experts jointly gives the predicted label for the input. (c)
Double-branch robust structure, the network is trained on a se-
lected set which is considered clean by another network. (d) Ours,
a mixture-of-experts module is integrated into the classification
network, which works for robust selection as well as prediction
ensemble.

both the two adopted selection strategies incur the imbal-
anced data distribution under two noisy conditions. The
reason is that both the two selection criteria rely on model
performance. However, the model has different capacities
for different classes. For those classes with indistinguish-
able characteristics (i.e., rare classes), the model tends to
produce a large loss or inconsistent results and further dis-
cards those samples.

• Sample selection, conducted as self-training, will exac-
erbate the imbalanced ratio during the training process.
As shown in Figure 2 (a), the imbalanced ratio of the se-
lected set increases as the training process proceeds, i.e.,
the number of selected instances increases in head classes
and decreases in tail classes (see the right part of Figure
2). The intuitive reason is that the model’s performance
on tail classes hardly improves due to the limited number
of available samples for training, which further degrades
the effectiveness of selection criteria on these classes.

• The selection performance is inherently influenced by the
imbalanced class distribution. As shown in Figure 2 (b),
the selection performance of both two selection criteria
increases in head classes but decreases in tail classes. The
reason is that the selected errors are relatively small for
categories with higher F-scores. Hence, the training of
these classes would further improve the model’s accuracy
and selection performance. However, for tail classes with
lower F-score, the self-training mechanism would further
increase the selection error and thus fail to select instances
in the follow-up phase correctly.

Based on these observations, we are motivated to design a
model that confronts not only accumulated error but also the
imbalanced selected set.

3. Methodology
Preliminaries. In LNL, we are given a label-corrupted
training set DN = {(xi, ỹi)}i∈[N ] of N samples. A clas-
sifier with learnable parameters fθ is a function that maps
from the input space X to the label space f : X → RK . In
multi-class classification, we always update the parameter
θ by minimizing the following empirical risk:

R̂(f) =
1

N

∑N

i=1
L(f(xi,θ), ỹi), (1)

where L(·) is the given loss function, e.g., Softmax Cross-
Entropy (CE) loss. In sample selection strategy, previous
works mainly focus on designing high-effectively selection
criteria. Here, we give a universal training objective on the
selected clean set, which is written as

R̂clean(f) =
1

N

∑N

i=1

[
Criterion(f,xi, ỹi) · L(f(xi,θ), ỹi)

]
,

where Criterion(·) =
{

1, If selected,
0.

(2)

In this unified formula, the classifier intended to be opti-
mized is consistent with the classifier serving as the noise
filter during the selection phase, which easily leads to the
training bias. Empirical results in the section above show
that directly optimizing R̂clean(f) with an existing selection
criterion is always biased, further resulting in inferior gen-
eralization performance.
Overview. We propose to fulfill debiased learning by han-
dling both the training and data bias. First, to solve the
training bias, we design a novel network architecture called
noIse-Tolreant Expert Model (ITEM). Compared with the
widely applied double-branch network, our proposal ex-
hibits greater robustness to noisy labels. Second, to solve
the data bias, we propose a weighted resampling strat-
egy that can mitigate the side-effect caused by the class-
imbalanced set Dclean while avoiding sparse representations.

3.1. ITEM: noIse-Tolerant Expert Model
The training bias in sample selection arises from the self-
training approach. Previous works [11, 21] always resort to
the double-branch network to confront this problem. Con-
cretely, the network is trained on the clean set that is se-
lected by the other network. Motivated by Mixture-of-
experts [29, 31], we propose a robust architecture that in-
tegrates multiple experts into the classifier, which indepen-
dently conducts classification and sample selection.

Specifically, compared with a normal classification net-
work with a classifier layer f , our network ITEM contains
f and a set of additional expert layers {g1, ..., gm} with size
m. Each expert layer has the same dimension as the classi-
fier layer, i.e., ∥f∥ = ∥g∥. For robust selection, we propose
to conduct existing criteria on expert layers instead of the
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Figure 4. Mapping function Sβ(·) with different values of β.

classifier layer. Consequently, the training objective in our
framework can be summarized as

R̂clean(f) =
1

N

∑N

i=1

[
Criterion({g1, ..., gm},xi, ỹi)·

L(f(xi,θ), ỹi)
]
. (3)

Intuitively, the independent selection phase prevents the
classifier layer from selecting noisy samples and updating
its parameters based on them, significantly mitigating the
training bias. In practice, a voting strategy is applied to en-
semble the selection results of m experts, where the sample
selected by all experts is considered clean. It is noteworthy
that the selection criterion Criterion(·) is not restricted to
a specific form (e.g., small-loss based or fluctuation-based),
which highlights the applicability of this expert model as a
backbone in sample selection.
Advantages of the MoE structure. We compare differ-
ent network structures in LNL in Figure 3. Compared with
the prevailing double-branch networks, which have proved
to be noise-robust in previous works [11, 21], our architec-
ture offers two advantages, including 1) Greater robustness
to noisy labels. Each expert exhibits different capabilities
during training, resulting in a better inductive bias for both
selection and prediction. Specifically, by ensembling the
selections from different experts, the MoE minimizes nega-
tive interference from incompatible patterns (e.g., poor se-
lection made by individual experts), thereby enhancing the
framework’s robustness against noisy labels. 2) Resource-
friendly training. In contrast to the feature extractor’s huge
parameters, the last layer’s parameters for classification are
significantly fewer. The additional learnable parameters in
our model are less than 2% of those in the double-branch
network. Thus, our network is more friendly to GPU and
computer memory.

3.2. Beta-Resampling
To overcome the data bias, we propose a mixed beta-
sampling strategy that promotes the sampling frequency for
tail classes in the selected clean set when sampling. Thus,
the model can learn from more knowledge from the tailed
classes, contributing to mitigating the data bias.

Specifically, suppose a clean set Dclean is selected from
the DN , where Dclean ⊆ DN . The set of samples labeled as

class k in Dclean is Dk
clean. By introducing L1 normalization,

a vector of class frequencies v can be obtained,

v = [w1, w2, ...wK ], where wk =
∥Dk

clean∥
∥Dclean∥

. (4)

Here, we can regard the class frequency as the sampling
weight, i.e., the class with a larger frequency will be sam-
pled with a greater weight during the data loading phase.

To mitigate the data bias, which leads the model to learn
from the majority classes mainly, we propose a mapping
function that maps the lower frequency to a higher weight
when data sampling. Concretely, this mapping function
stems from the probability density function (PDF) of a Beta
distribution. Normally, the Beta distribution’s PDF is con-
trolled by two parameters α, β. To satisfy both 1) the input
interval of wk belongs to [0, 1] and 2) the function contains
the monotonically decreasing property, we thus fix α = 1
and adjust β for different slopes. Given a weight wi, the
reversed weight w̃i is written as

w̃i = Sβ(wi) =
1

B(1, β)
(1− wi)

β−1, (5)

where β is a hyper-parameter and B(·) denotes a beta func-
tion written as B(1, β) =

∫ 1

0
(1− t)β−1dt.

The mapping function Sβ(·) for varying values of β is
illustrated in Figure 4. It can be observed that as the input
weight increases, the output value decreases. Consequently,
this mapping function enables the transformation of class
frequencies in Eq. 4 into a tail-focused weighted vector ṽ =
[w̃1, . . . , w̃K ]. By weighted sampling with ṽ, a tail-classes
focused training batch Bṽ can be obtained. Training the
model on Bṽ can effectively mitigate the data bias.

3.3. Stochastic Classifier Training
Since the noise filter and the optimizer are disentangled in
Eq. (3), largely mitigating the training bias, the parameter
update of expert layers is unreachable. Considering almost
all existing selection criteria rely on the model’s perfor-
mance, dynamically updating the parameters of expert lay-
ers is necessary. To fulfill this goal, we propose a stochastic
training strategy, which randomly assigns a layer from the
set of F = {f, g1, ..., gm} as the classifier layer f c and the
rest are expert layers. Hence, Eq. (3) can be rewritten as

R̂clean(f
c) =

1

N

∑N

i=1

[
Criterion(F\f c,xi, ỹi)·

L(f c(xi,θ), ỹi)
]
. (6)

Since the aim-to-optimized layer f c is initialized from the
set F in each iteration, the performance of each layer can
be ensured under sufficient training processes.

Despite a highly integrated framework in Eq. (6) pro-
posed, the training manner is practically decoupled into



Table 1. Test accuracy (mean±std) of methods using ResNet-18/34 on CIFAR-10/100. Note that †, ‡ and ♯ denote three selection criteria,
i.e., small-loss selection with loss threshold [11], small-loss selection with Gaussian Mixture Model [21], and fluctuation-based noise
filtering [40]. Bold values denote the best the second best performance.

Methods Sym. 20% Sym. 40% Inst. 20% Inst. 40% Avg.

C
IF

A
R

-1
0

Cross-Entropy 85.00 ± 0.43% 79.59 ± 1.31% 85.92 ± 1.09% 79.91 ± 1.41% 82.61
JoCoR [38] 88.69 ± 0.19% 85.44 ± 0.29% 87.31 ± 0.27% 82.49 ± 0.57% 85.98
Joint Optim [35] 89.70 ± 0.36% 87.79 ± 0.20% 89.69 ± 0.42% 82.62 ± 0.57% 87.45
CDR [44] 89.68 ± 0.38% 86.13 ± 0.44% 90.24 ± 0.39% 83.07 ± 1.33% 87.28
Me-Momentum [3] 91.44 ± 0.33% 88.39 ± 0.34% 90.86 ± 0.21% 86.66 ± 0.91% 89.34
PES [4] 92.38 ± 0.41% 87.45 ± 0.34% 92.69 ± 0.42% 89.73 ± 0.51% 90.56
Late Stopping [53] 91.06 ± 0.22% 88.92 ± 0.38% 91.08 ± 0.23% 87.41 ± 0.38% 89.62

† Co-teaching [11] 87.16 ± 0.52% 83.59 ± 0.28% 86.54 ± 0.11% 80.98 ± 0.39% 84.56
† ITEM (Ours) 93.79 ± 0.14% 90.83 ± 0.19% 93.52 ± 0.14% 91.09 ± 0.18% 92.31
‡ ITEM (Ours) 95.01 ± 0.21% 93.10 ± 0.20% 95.18 ± 0.19% 93.65 ± 0.12% 94.24

♯ SFT [40] 92.57 ± 0.32% 89.54 ± 0.27% 91.41 ± 0.32% 89.97 ± 0.49% 90.87
♯ ITEM (Ours) 95.26 ± 0.23% 92.81 ± 0.20% 95.80 ± 0.18% 93.13 ± 0.29% 94.25

C
IF

A
R

-1
00

Cross-Entropy 57.59 ± 2.55% 45.74 ± 2.61% 59.85 ± 1.56% 43.74 ± 1.54% 51.73
JoCoR [38] 64.17 ± 0.19% 55.97 ± 0.46% 61.98 ± 0.39% 50.59 ± 0.71% 58.17
Joint Optim [35] 64.55 ± 0.38% 57.97 ± 0.67% 65.15 ± 0.31% 55.57 ± 0.41% 60.81
CDR [44] 66.52 ± 0.24% 60.18 ± 0.22% 67.06 ± 0.50% 56.86 ± 0.62% 62.65
Me-Momentum [3] 68.03 ± 0.53% 63.48 ± 0.72% 68.11 ± 0.57% 58.38 ± 1.28% 64.50
PES [4] 68.89 ± 0.41% 64.90 ± 0.57% 70.49 ± 0.72% 65.68 ± 0.44% 67.49
Late Stopping [53] 68.67 ± 0.67% 64.10 ± 0.40% 68.59 ± 0.70% 59.28 ± 0.46% 65.16

† Co-teaching [11] 59.28 ± 0.47% 51.60 ± 0.49% 57.24 ± 0.69% 45.69 ± 0.99% 53.45
† ITEM (Ours) 72.42 ± 0.17% 71.96 ± 0.24% 73.61 ± 0.16% 69.90 ± 0.30% 71.97
‡ ITEM (Ours) 78.20 ± 0.09% 75.27 ± 0.20% 77.91 ± 0.14% 70.69 ± 0.31% 75.51

♯ SFT [40] 71.98 ± 0.26% 69.72 ± 0.31% 71.83 ± 0.42% 69.91 ± 0.54% 70.86
♯ ITEM (Ours) 77.19 ± 0.13% 74.90 ± 0.24% 76.91 ± 0.23% 71.44 ± 0.29% 75.11

three stages that are proceeding iteratively, 1) select clean
samples via the preset criterion based on the ensemble re-
sult of all experts, 2) randomly select an optimization layer,
and 3) train this layer on the selected set.

Considering training on the tail-focused training batch
directly would result in the sparse representation of head
classes [57], we separately conduct two times weighted
samples (according to the weighted and reversed weighted
vector v, ṽ) in each data-loading phase, which focus on
head and tail classes, respectively. By leveraging the MixUp
strategy [55], the model can learn a more representative
feature extractor on the mixed data. Specifically, in each
training iteration, we respectively sample a head-focused
batch Bv = {(xi, ỹi)}bi=1 and a tail-focused batch Bṽ =
{(x′

i, ỹ
′
i)}bi=1 from D̃clean according to ṽ, where b denotes

the size of the mini-batch. By randomly selecting a layer
from F as the optimized-classifier layer f c, the parameter’s
update can be achieved by minimizing

Ltrain =
1

b

∑b

i=1
L
(
f c

(
MixUp(xi,x

′
i)
)
, MixUp(ỹi, ỹ

′
i)
)
,

(7)
where MixUp(, ) is represented as MixUp(a, b) = γ · a +
(1 − γ) · b and γ is a trade-off coefficient randomly sam-

pled from a beta distribution beta(δ, δ). The algorithm
flowchart of ITEM is shown in Algorithm 1 (see Appdx).

4. Experiments
Datasets. We assess the performance of ITEM on two
noise-synthetic datasets CIFAR-10 and CIFAR-100 [18],
two human-annotated datasets CIFAR10N and CIFAR100N
[39], and three real-world noisy benchmarks including
Clothing-1M [47], Food-101N [20], and Webvision [23].
Baselines. On CIFAR-10 and CIFAR-100, we compare
ITEM with prevailing methods that can be roughly divided
into three parts, including 1) small-loss based selection, Jo-
CoR [38], and Me-Momentum [3], 2) fluctuation-based se-
lection, SFT [40] and Late Stopping [53], 3) others, Cross-
Entropy, Joint Optim [35], and PES [4]. Reported results in
this paper are collected from SFT and Late Stopping. More
information is shown in Appdx.
Implementation details. Our code implements utilize Py-
torch 1.9.0 and all experiments are run on a single RTX
4090 GPU. We keep the convention from [40, 53] and adopt
ResNet-18 and ResNet-34 for CIFAR-10 and CIFAR-100,
respectively. For all noisy conditions on CIFAR-10 & 100,
we leverage an SGD optimizer with the momentum 0.9 and



Table 2. Test accuracy (%) of prevailing methods using ResNet-
34 on CIFAR10N and CIFAR100N. Note that ✓ and ✗ indicate
whether a semi-supervised framework is used or not.

Methods CIFAR10N CIFAR100NWorst R1 R2 R3

Co-teaching+ [52] ✗ 83.26 89.70 89.47 89.54 60.37
Peer Loss [27] ✗ 82.00 89.06 88.76 88.57 57.59
CAL [59] ✗ 85.36 90.93 90.75 90.74 61.73
Late Stoping [53] ✗ 85.27 - - - -
‡ ITEM ✗ 91.15 95.12 95.03 95.17 69.47

DivideMix [21] ✓ 92.56 95.16 95.23 95.21 71.13
ELR+ [26] ✓ 91.09 94.43 94.20 94.34 66.72
CORES* [8] ✓ 91.66 94.45 94.88 94.74 61.15
DPC [60] ✓ 93.82 95.97 95.92 95.90 71.42
‡ ITEM* ✓ 93.14 96.08 96.54 96.71 72.40

the weight-decay 1e − 3 to train our network. The total
training epoch is set as 200. The initial learning rate is
0.02 and decayed with the factor 10 at the 100-th and 150-
th epoch. For real-world noise, we adopt a ResNet-34 for
CIFAR-N and a pre-trained ResNet-50 for Clothing-1M and
Food101N, and Inception-ResNet-V2 [34] for WebVision.
Other training set-ups like the number of training epochs,
the learning rate and its adjustment, the optimizer, and so
on keep the same as [25].
Hyper-parameters. Our framework contains two main
hyper-parameters, i.e., the number of expert m in the net-
work architecture, and the slope parameter β in the mapping
function. We keep β = 2 for all experiments and set m = 4
for CIFAR and m = 2 for three open-world datasets.

4.1. Results on Synthetic Noisy Datasets
We conduct comparison experiments with two synthetic
noise types on CIFAR-10 & 100, where we manually con-
struct different noisy types on these two datasets. Since our
framework is agnostic to selection criteria, we test our pro-
posal on three types of selection criteria. Experimental re-
sults are shown in Table 1.

On both CIFAR-10 and CIFAR-100, our method ITEM
consistently achieves state-of-the-art performance in all
noisy settings. Compared with other section-based methods
such as Co-teaching and SFT, ITEM obtains obvious per-
formance improvements while adopting their selection cri-
teria. To be specific, †ITEM averagely improves the test ac-
curacy of Co-teaching by 9.68% on CIFAR-10 and 22.06%
on CIFAR-100. Compared with SFT [40], a representative
method in fluctuation-based selection, ITEM also achieves
remarkable improvements.

4.2. Results on Real-World Noisy Datasets
We test ITEM’s performance on two human-made noisy
datasets and three website noisy datasets. Considering that
semi-supervised learning can utilize the sample discarded

Table 3. Test accuracy (%) comparison of previous methods on
three real-world noisy benchmarks. Top-1 and Top-5 test accuracy
are reported for the dataset WebVision.

Methods Food101N Clothing1M WebVision
Top-1 Top-5

Co-teaching [11] 83.73 67.94 63.58 85.20
JoCoR [38] 84.04 69.06 63.33 85.06
CDR [44] 86.36 66.59 62.84 84.11
ELR+ [26] 85.77 74.81 77.78 91.68
DivideMix [21] 86.73 74.76 77.32 91.64
SFT+ [40] - 75.00 77.27 91.50
CoDis* [46] 86.88 74.92 77.51 91.95
SURE [25] 88.00 75.10 78.94 92.34

‡ ITEM* 88.14 75.08 80.20 93.07

by the sample selection framework to regularize the model’s
learning [21], we integrate ITEM with the Pseudo-labeling
technique [19] to further improve the performance.

1) Results on CIFAR10N & 100N. The results are shown
in Table 2. First, our method achieves remarkable perfor-
mance on both two settings (w/ or w/o SSL). When train-
ing without SSL, ITEM outperforms previous methods by
a large margin. Compared with Late Stopping, a newly
proposed method, ITEM achieves 5.88% improvements on
worst-labels. When training with SSL, ITEM is superior
to the previous SOTA method, DivideMix. Even training
without SSL, ITEM surprisingly gains greater performance
than those methods that leverage SSL approaches.

2) Results on Food101N, Clothing1M, and WebVision.
The results are shown in Table 3. On Food101N, our pro-
posal achieved the best performance, outperforming SURE
(the method with the second-best performance) [25] by
0.14%. On Clothing1M, the performance of our proposal
is not the best but considerably competitive. Compared
with the best performance, the 75.1% test accuracy, ITEM
obtained a closed score, i.e., 75.08%. On WebVision, we
keep the convention from the work [46] that tests the per-
formance on the validation set of WebVision. ITEM signif-
icantly improved Top-1 accuracy by nearly 1.3%.

The result verifies that our method effectively enhances
model generalization in large-scale real-world scenarios.

4.3. More Analyses

Debias learning for LNL. We visualize the test accuracy
in each class to demonstrate that ITEM achieves relatively
balanced performance on varying categories while fulfilling
greater generalization. We plot comparison results in Figure
5. First, ITEM achieves almost unbiased prediction results
compared to CE (clean), which is trained on 50k clean sam-
ples. Second, compared with existing methods, ITEM takes
tail classes better into account since two weighted samplers.
Therefore, ITEM performs better in these categories. Be-
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Figure 5. Visualization of debias learning in a class-level. We selected a ResNet-18 as the backbone and compared class-level prediction
results of various methods on CIFAR-100 with four noise types. “CE (clean)” denotes training the model on the completely clean set (50k
samples in total). The index of classes is sorted according to the class-level accuracy.
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Figure 6. Robustness comparison of different networks under
two selection criteria. Our proposed MoE structure significantly
mitigates the adverse effect of noisy labels.

sides, under 20% symmetric label noise, ITEM achieved
better performance than the model trained on an absolutely
clean set (see the red line vs. the black line). These re-
sults demonstrate that our approach has significant poten-
tial to address the implicit bias inherent in sample selection
frameworks for noisy label learning.
Robustness of MoE structure. Compared with existing
robust network, our proposal MoE exhibits better robust-
ness. To clearly show this merit, we evaluate two selection
criteria and plot the training curve under three networks
in Figure 6. For the small-loss criterion, which easily in-
curs accumulation errors (see the green line (a)), the per-
formance improvement with the MoE structure is signifi-
cant. In contrast to the double-branch structure, which ex-
periences slight performance degradation when the learning
rate decreases at the 100th epoch (see the orange line in (b)),
the learning curve with the MoE structure is more robust
and stable. Second, in terms of fluctuation-based selection,
the MoE demonstrates greater robustness, more stable train-
ing curves, and better generalization performance in noisy
settings. In addition, its plug-in plug-out capability further
verifies the versatility of the MoE structure.

Table 4. Ablation studies of each component in ITEM with vary-
ing noise conditions.

Methods CIFAR-10 CIFAR-100 CIFAR10N CIFAR100N
Sym 40% Sym 40% Worst Fine

w/o MoE Network 90.75 73.01 89.72 68.19
w/o Mixed Sampling 88.77 71.09 87.66 68.24
w/o MixUp 91.19 72.50 89.90 69.10
Ours 92.81 74.90 91.15 69.72

4.4. Ablation Studies

Effect of each component. Our framework mainly con-
tains two modules: the robust network architecture and the
mixed data sampling strategy. We conduct ablation studies
on CIFAR benchmarks to evaluate the effectiveness of each
component from the following two perspectives.

1) Quantitative analysis. We split the main component
in ITEM into three parts: robust MoE, Mixed sampling, and
the MixUp strategy. By solely removing them from ITEM,
we reported the performance of the model in Table 4. Com-
pared with typical ResNet architecture, our expert-based
network indeed makes an obvious contribution to mitigat-
ing the noise. The average improvement among five settings
roughly reaches 2%. Second, the mixed sampling strategy
also promotes the performance of our network. Compared
with training on randomly sampled batches, training on two
weighted sampled batches gains greater generalization.

2) Representation visualization. Considering that train-
ing with different sampling leads the model to different rep-
resentation performance, we compare the learned represen-
tation space of the test set of CIFAR-10 and show the results
in Figure 7. We can see that the learned representation of
ten classes on the normal sampling B is incompact, while
the decision boundary is not well generalized. By contrast,
if the proposed reversed tail-focused batch Bṽ is adopted,
each cluster is more compact where the distance between
each cluster is larger, which verifies the effectiveness of
our proposal sampling strategy in mitigating data bias un-
derlying the selection phase. Eventually, by leveraging the
Mixup operation, a feature extractor with better representa-
tion performance is obtained, as shown in the last plot.
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Figure 7. Visualization of feature representations on the CIFAR-
10 test set by T-SNE [36] with different sampling strategies. (a)
Training on randomly sampled batch B, (b) Training on Bṽ , and
(c) Training on MixUp(Bv, Bṽ).
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Figure 8. Sensitivity analyses of two hyper-parameters in ITEM.
A ResNet-18 is trained on CIFAR-10 with 40% sym. noisy labels.

Sensitivity analyses. ITEM has two main hyper-
parameters, m and β. We conduct ablation studies to se-
lect optimal values for experiments. The result is shown in
Figure 8. First, the number of expert layers m is the most
important parameter in our framework, which decides the
overall network structure and computation costs. From the
right figure, we can observe that the performance of ITEM
gradually increases with the value of m increases. When ar-
riving at a peak, i.e., 93.55% top-1 accuracy at m = 5, the
performance will not increase if the value of m becomes
larger. Therefore, we recommend a larger value of m given
an unknown dataset. Second, the value of β has slightly
influenced the performance of our method, where we also
prefer a larger value of β.

5. Related Work
There are three main research lines in sample selection
against the incorrect information from noisy labels.

1) Robust selection criteria. Previous sample selec-
tion methods normally exploit the memorization effect of
DNNs, i.e., DNNs first memorize training data with clean
labels and then those with noisy labels [11, 44]. The small-
loss criterion [11] is a typical method stemming from the
memorization effect, which splits the noisy training set via
a loss threshold. The samples with small losses are regarded
as clean samples. Some improved criteria [1, 21] based on
the small-loss criterion are proposed in later works. In addi-
tion to the family of small loss criterion, some methods mo-
tivated by prediction fluctuation are designed. These meth-
ods [45, 58] observe that the model tends to give inconsis-
tent prediction results for noisy samples and thus filter noisy
labels by identifying high-frequency fluctuation samples.

2) Robust network architecture. Easily works based on
constructing the noise transition matrix always resort to an
additional adaptation layer at the top of the softmax layer
[14] or design a new dedicated architecture [10, 50]. Re-
cently, a family of double-branch networks [11, 21, 38, 52]
has been proposed, which integrates two networks with the
same architecture and selects clean samples for another net-
work. Besides, better performance would be achieved when
ensembling prediction results from two networks [11].

3) Robust training procedures. Overall, current methods
in sample selection always resort to a self-training manner,
i.e., iteratively conducting clean label selection and model
retraining. However, the incorrect selection would degrade
the subsequent model learning. Recently, some robust train-
ing manners were proposed. Concretely, [58] designed a
framework based on curriculum learning [5], which starts
with learning from clean data and then gradually moves to
learn noisy-labeled data with pseudo labels. There are also
some works [32, 51] utilizing active learning to gradually
modify the label of noisy samples.
Relations to us. The advantages of our proposal compared
with previous methods can be divided into the following
three parts, which are summarized in Table 5 in Appendix.
• Flexibility of the network structure. To our knowledge,

we are the first to apply a mixture-of-experts (MoE) struc-
ture to LNL. Despite the core idea of MoE and double-
branch structure being similar (i.e.,ensembling prediction
results and the selection result over different views), MoE
exhibits more flexibility. Expanding the number of ex-
perts is simple and only increases slight parameter counts
(0.01 million per expert). By contrast, the double-branch
structure is hardly extended to a three- or four-branch
structure since the number of learnable parameters.

• Expansibility of the framework. Compared with previous
selection-based methods, our proposal is agnostic to the
selection criteria, which can be easily integrated with dif-
ferent selection criteria and improves their performance.

• Debias learning. Previous mainly focus on the accumu-
lation error, a training bias. In this paper, we empiri-
cally show the existence of data bias (i.e., the imbalanced
dataset selected by current selection criteria) and design
an expert-based sampling strategy, which mitigates this
bias by adjusting selection probabilities and increasing
the visibility of underrepresented classes.

6. Conclusion
In this paper, we disclosed the data bias, an implicit bias un-
derlying the sample selection strategy. To solve the training
and data bias simultaneously, we proposed ITEM that in-
troduces a noise-robust multi-experts network and a mixed
sampling strategy. First, our structure integrates the classi-
fier with multiple experts and leverages expert layers to con-
duct selection independently. Compared with the prevailing



double-branch network, it exhibits great potential in miti-
gating the training bias, i.e., the accumulated error. Second,
our mixed sampling strategy yields class-aware weights and
further conducts weighted sampling. The effectiveness of
ITEM in real applications is verified on diverse noise types
and both synthetic and real-world datasets.
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Supplementary materials

A. Visualization of Data Bias

In this section, we conducted extensive experiments that
discover the existence of the data bias, e.g., the imbalanced
subset is selected by current selection-based frameworks.
Despite the Figure 1 in the section of Introduction, we show
more results in the following figure (See Figure 9).

We can observe that data bias widely exists in selection-
based frameworks no matter different noise types and dif-
ferent datasets.
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Figure 9. Extended results of Figure 1. (a) Small-loss
with threshold [11], (b) Small-loss with GMM [21], and (c)
Fluctuation-based noise filtering [40].

B. Algorithm of ITEM

We provided the pseudocode for ITEM in Algorithm 1.
ITEM with semi-supervised learning. Considering the
large scale of unreliable samples discarded, especially in
considerable noise ratios, leveraging these samples through
semi-supervised learning (SSL) to regularize the model is
necessary as well as effective. Thanks to the flexible train-
ing framework, any SSL method can be integrated into our
proposal ITEM.

Here, we provide a novel version of ITEM with stronger
performance. The algorithm is shown in Algorithm 2. Be-
sides, a strong augmentation CTAugment is used, which
refers to [33]. Compared with its original version, the
new training framework only adds two operations (shown
in Lines 12 and 13). Thus, the code implementation is rela-
tively convenient.

C. Experimental Settings

In this section, we reported the statistical data of seven
datasets utilized in this paper and the whole experimental
setup in Table 6.

Algorithm 1 ITEM
Input: Noisy training set DN , training epoch T , warmup
iterations Tw, a selection criterion Criterion(·), a classifier
network with m experts, the mapping function Sβ(·) with a
hyper-parameter β.

1: Initialize our network with one classifier layer and m
expert layers F = {f, g1, ..., gm}.

2: for t = 1, ..., Tw do
3: Randomly sample f c from F, and WarmUp f c on

DN .
4: end for
5: for t = 1, ..., T do
6: Select the clean set Dclean from DN based on

Criterion(F).
7: Calculate weighted vector v = [w1, ..., wK ] on

Dclean.
8: Calculate reversed weighted vector ṽ = [w̃1, ..., w̃K ]

with Equation (5).
9: while i = 1, ..., iterations do

10: Sample a mini batch Bv = {(xi, ỹi)}bi=1 from
Dclean according to v.

11: Sample a mini-batch Bṽ = {(x′
i, ỹ

′
i)}bi=1 from

Dclean according to ṽ.
12: Sample f c from F.
13: Update the network parameters by minimizing the

loss in Equation (7).
14: end while
15: end for

C.1. Dataset

CIFAR-10 and CIFAR-100 [17] dataset consists of 60,000
images of 10 and 100 categories. Each image is with a res-
olution of 32 × 32.

CIFAR10N and CIFAR100N [39] also consists of
60,000 images. Meanwhile, the noise labels in these two
are human-made with varying noise conditions, including
worst and random 1&2&3 for CIFAR10N and fine noise
for CIFAR100N.

Clothing1M [47] is a large-scale dataset that is collected
from real-world online shopping websites. It contains 1
million images of 14 categories whose labels are generated
based on tags extracted from the surrounding texts and key-
words, causing huge label noise. The estimated percentage
of corrupted labels is around 38.46%. A portion of clean
data is also included in Clothing1M, which has been divided
into the training set (903k images), validation set (14k im-
ages), and test set (10k images). We resize all images to



Table 5. We compare ITEM with various selection-based methods over four perspectives.

Methods Network architecture Selection-criterion specific Training debias Data debias

Co-teaching [11], CoDis [46] Double-branch Small-loss criterion ✗ ✗
JoCoR [38], DivideMix [21], ProMix [37] Double-branch Small-loss criterion ✓ ✗

SFT [40], Late Stopping [53] Single-branch Fluctuation-based selection ✓ ✗

ITEM (ours) Mixture-of-Experts Not specific ✓ ✓

Algorithm 2 ITEM with a semi-supervised framework
Input: The training set DN , training epoch T , warmup it-
erations Tw, a selection criterion Criterion(·), a classifier
network with m experts, the mapping function Sβ(·) with a
hyperparameter β.

1: Initialize our network with one classifier layer and m
expert layers F = {f, g1, ..., gm}.

2: for t = 1, ..., Tw do
3: Randomly sample f c from F, and WarmUp f c on

DN .
4: end for
5: for t = 1, ..., T do
6: Split DN into the clean set Dclean and the unreliable

set D̃noise based on Criterion(F), and discard labels
in D̃noise.

7: Calculate weighted vector v = [w1, ..., wK ] on
D̃clean.

8: Calculate reversed weighted vector ṽ = [w̃1, ..., w̃K ]
with Eq. (5).

9: while i = 1, ..., iterations do
10: Randomly sample a batch Bv = {(xi, ỹi)}bi=1

from Dclean according to v.
11: Randomly sample a batch Bṽ = {(x′

i, ỹ
′
i)}bi=1

from Dclean according to ṽ.
12: Draw a mini-batch B̂ = {(x′′

i )}2bi=1 from Dnoise

without labels.
13: Generate pseudo-labels for each sample in B̂,

then have B̂ = {(x′′
i , ỹ

′′
i )}2bi=1, where ỹ′′i =

Ef∼F[f(x
′′
i )].

14: Randomly sample f c from F.
15: Update network parameters via minimizing

L
(
f c

(
MixUp(Bv and Bṽ, B̂)

)
.

16: end while
17: end for

256× 256 as in [21] and then random crop to 224 × 224.
Food-101N [20] is constructed based on the taxonomy of

101 categories in Food-101 [7]. It consists of 310k images
collected from Google, Bing, Yelp, and TripAdvisor. The
noise ratio for labels is around 20%. Following the testing
protocol in [20], we learn the model on the training set of
55k images and evaluate it on the testing set of the original
Food-101.

WebVision [23]. Following [26], we use a mini ver-
sion of WebVision where only the top 50 classes are uti-
lized. This mini WebVision dataset contains approximately
66 thousand images and the corresponding noise ratio is
roughly 20%.

C.2. Other Baselines
On two human-annonated datasets CIFAR10N and CI-
FAR100N, we compare ITEM with Co-teaching+ [52], Peer
Loss [27], CAL [59], DivideMix [21], ELR+ [26], CORES*
[8], and DPC [60]. The results are collected from the litera-
ture [39]. On three real-world noisy datasets, we compared
ITEM with SURE [25], Co-teaching [11], MentorNet [12],
JoCoR [38], CDR [44], ELR [26], DivideMix [21], SFT
[40], CoDis [46], SURE [25].

D. More Experimental Results

D.1. Results on Imbalanced Noisy Labels
Recently, some literature [13, 42, 56] studied a more chal-
lenging noise learning task, i.e., learning with noisy labels
on imbalanced datasets, which is a more realistic scenario.
Our method can also tackle this task thanks to the class-
aware data sampling strategy in ITEM. Following the im-
balanced noise setting and experimental setup of RCAL
[56], we verify the performance of ‡ITEM on comprehen-
sive conditions.

Dataset construction. Let Tij(x) denote a probability
that the true label i of the instance x is corrupted to the noisy
label. Therefore, given a noise ratio rho, the noise transi-
tion matrix satisfies that Tij(x) = ρ if i = j, otherwise
Tij(x) = 1

C−1ρ, where C denotes the number of classes.
We first construct an imbalanced dataset on CIFAR with dif-
ferent imbalanced ratios ξ = {10, 100} and then corrupt the
labels with varying noisy ratio ρ = {10%, ..., 50%}.

We compare our proposal ITEM with various methods
in LNL and imbalanced LNL, including Co-teaching [11],
RoLT [42], Sel-CL+ [22], and RCAL [56]. Comparison
results are shown in Table 7. Weighted sampling, which
mitigates data bias by adjusting selection probabilities and
increasing the visibility of underrepresented classes dur-
ing training, helps ITEM tackle long-tailed classification
tasks. On both imbalanced noisy datasets, ITEM exhibits
greater generalization under a high noise ratio. For exam-



Table 6. Experimental settings about training procedure of ITEM.

Datasets CIFAR-10 CIFAR-100 CIFAR-10N CIFAR-100N Clothing-1M Food-101N WebVision

Class number 10 100 10 100 14 101 50
Training size 50,000 50,000 50,000 50,000 1,000,000 310,009 66,000
Testing size 10,000 10,000 10,000 10,000 10,000 25,250 2,500

Training procedure

Network ResNet-18 ResNet-34 ResNet-50 InceptionResNetV2
Batch size 64 100 32
Epoch 200 10 100 30
Warmup epoch 10 30 10 30 1 5 3
Learning rate (LR) 0.02 0.001 0.02
Weight decay 1e-3 5e-4
LR scheduler divide 10 at [100,150]th epoch divide 10 at 5th epoch divide 10 at 50th epoch divide 10 at 20th epoch
Optimizer SGD
Momentum 0.9

Hyperparameters

experts number m m = 4 m = 2 m = 3

the slope parameter β β = 3

Table 7. Test accuracy (%) of prevailing methods using the ResNet-32 on imbalanced noisy CIFAR-10 and CIFAR-100. The best and the
second-best performance are highlighted with bold and underline, respectively.

Imbalanced ratio ξ 10 100

Noise ratio ρ 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

C
IF

A
R

-1
0

CE 80.41 75.61 71.94 70.13 63.25 64.41 62.17 52.94 48.11 38.71
Co-teaching [11] 80.30 78.54 68.71 57.10 46.77 55.58 50.29 38.01 30.75 22.85
RoLT [42] 85.68 85.43 83.50 80.92 78.96 73.02 71.20 66.53 57.86 48.98
Sel-CL+ [22] 86.47 85.11 84.41 80.35 77.27 72.31 71.02 65.70 61.37 56.21
CurveNet [13] 87.12 85.02 84.39 82.99 78.57 76.55 74.19 71.90 67.20 64.83
RCAL [56] 88.09 86.46 84.58 83.43 80.80 78.60 75.81 72.76 69.78 65.05

Ours 87.32 86.31 84.91 84.72 81.04 78.39 76.21 74.19 70.99 67.28

C
IF

A
R

-1
00

CE 48.54 43.27 37.43 32.94 26.24 31.81 26.21 21.79 17.91 14.23
Co-teaching [11] 45.61 41.33 36.14 32.08 25.33 30.55 25.67 22.01 16.20 13.45
RoLT [42] 54.11 51.00 47.42 44.63 38.64 35.21 30.97 27.60 24.73 20.14
Sel-CL+ [22] 55.68 53.52 50.92 47.57 44.86 37.45 36.79 35.09 31.96 28.59
CurveNet [13] 55.96 54.60 51.28 48.10 44.61 40.91 39.71 35.90 32.09 29.71
RCAL [56] 57.50 54.85 51.66 48.91 44.36 41.68 39.85 36.57 33.36 30.26

Ours 56.10 55.93 53.07 48.29 45.17 44.00 41.90 40.44 37.28 34.80

ple, ITEM outperforms RCAL by 1.29% and 0.24% under
40% and 50% noise ratio, respectively. On CIFAR-100 with
an imbalanced ratio ξ = 100, ITEM consistently achieves
the best generalization performance over other comparison
methods. Under an extreme noise rate ρ = 50%, ITEM
achieves more than 4.5% improvement of top-1 test accu-
racy. Therefore, we believe that ITEM can also fulfill strong
robustness even under imbalanced real-world noisy condi-
tions.

D.2. Visualization of Class-Level Selection
As shown in Figure 10, we further visualize the class-level
selection performance of our proposal. We can see that the
total selection performance increases as the training pro-
gresses. Further, in the tailed classes where the value Fk

in other selection frameworks would decrease, ITEM grad-
ually improves the F-score in all classes instead of only in
head classes, demonstrating that ITEM effectively mitigates
the data bias.

D.3. Training Time Analysis
In Table 8, we compare the training times of ITEM and
(semi) ITEM* with three typical methods, using a single
Nvidia 4090 GPU. We can observe that the training time of
these methods based on double-brach networks (such as Co-
teaching and DivideMix) is always twice as slow as training
on a single network. However, in our proposed MoE struc-
ture, increasing the number of experts number will not sig-
nificantly increase the computation cost. Besides, integrat-
ing ITEM with a semi-supervised learning framework can



Table 8. Comparison of total training time in hours on CIFAR10N with Worst noise labels with varying experts number.

Metric
Single Network Double-branch Network Ours: MoE

CE Co-teaching DivideMix ITEM ITEM ITEM* ITEM*
[11] [21] (m = 3) (m = 5) (m = 3) (m = 5)

Test accuracy (%) ↑ 77.69 83.26 92.56 91.15 91.40 93.14 93.32
Times (hours) ↓ 1.6 4.2 4.4 1.6 1.7 1.8 1.8

Table 9. Test accuracy (%) on two fine-grained benchmarks with two noisy settings. The best and the second best performances are
highlighted with Bold and underline, respectively.

Methods
Stanford Dogs CUB-200-2011

Avg.
Sym 40% Asy 30% Sym 40% Asy 30%

Cross-Entropy 51.42 58.08 64.01 56.02 57.38
Confidence Penalty [30] 68.69 64.50 52.40 54.33 59.98
Label Smooth [28] 70.22 64.99 54.39 56.80 61.60
Co-teaching [11] 49.15 50.50 46.57 50.60 49.21
JoCoR [38] 49.62 53.59 52.64 51.70 51.89
SNSCL [41] 75.27 64.49 68.83 61.48 67.52

Ours 74.92 68.19 70.04 66.58 69.93

0.7

0.8

0.9

1.0

Fk

head tail

Epoch # 100, Ek∼[K]Fk = 0.84

Epoch # 150, Ek∼[K]Fk = 0.90

Epoch # 200, Ek∼[K]Fk = 0.95

Figure 10. Data debias on selection. We plot the class-level se-
lection performance of ITEM on CIFAR-100 with 60% symmetric
label noise.

bring considerable performance improvement with fewer
extra costs.

D.4. Results on Fine-Grained Noisy Labels

Recently, one literature [41] pointed out that noisy label
generation is strongly associated with fine-grained datasets.
Considering the property of wide existence and strong
meaningfulness of noisy fine-grained classification, follow-
ing settings in SNSCL [41], we conduct experiments on
four noisy fine-grained datasets, including Stanford Dogs
[15] and CUB-200-2011 [43]. Given the selection crite-
rion GMM-based small loss selection, we fine-tuned a (pre-
trained) ResNet-18 with three experts. We synthetically
construct two noise types, symmetric and asymmetric noise
labels.

The results are shown in Table 9. Our method achieves
significant generalization performance even when tackling

fine-grained noisy classification and consistently outper-
forms other methods by a large margin. For example, under
Stanford Dogs with 30% asymmetric noise, ITEM improves
the best method (label smooth) by more than 4%. We con-
sider the MixUp operation to be the primary contribution
to the advanced performance on fine-grained datasets for
two reasons, 1) it encourages the model to learn from struc-
tured data instead of the unstructured noise [1], and 2) it
encourages the model to learn a more generalized decision
boundary, which largely benefits the fine-grained classifica-
tion task.
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